United States Patent

US009137199B2

(12) 10) Patent No.: US 9,137,199 B2
Palani 45) Date of Patent: Sep. 15, 2015
(54) STATEFUL NAT64 FUNCTION IN A 58} };88;22;; i} éggﬁ Elo‘ggsify et al.
adaaads
DISTRIBUTED ARCHITECTURE 2011/0211553 Al 9/2011 Haddad
(75) Inventor: Kumara Venkatesh Palani, Santa Clara, OTHER PUBLICATIONS
CA (US) :
Despres, “IPv6 Rapid Deployment on IPv4 Infrastructure (6rd)”,
. Internet Engineering Task Force (IETF) RFC 5569, Jan. 2010.*
(73) Assignee: Microsoft Technology Licensing, LLC, Carpenter et al. “Connection of IPV6 Domains via IPv4 Clouds”,
Redmond, WA (US) Internet Engineering Task Force (IETF) RFC 3056, Feb. 2001 .*
Bagnulo et al., “Stateful NAT64: Network Address and Protocol
(*) Notice: Subject to any disclaimer, the term of this Translation from IPv6 clients to IPv4 Servers”, Internet Engineering
patent is extended or adjusted under 35 EﬁSk Ffrcet(lin?gg&gl‘}gﬁépg 2t()11_~* for Network Adds
agnulo, € . : Xtensions Ior €etwor] [SEHY
US.C. 154(b) by 668 days. Translation from IPv6 Clients to IPv4 Servers”, In Proceedings of
(1) Appl. No.: 13/405,563 Internet Engineering Task Force, Apr. 2011, 32 pages.
ppl. No.: 5
) * cited by examiner
(22) Filed: Feb. 27, 2012
Primary Examiner — Joseph Bednash
(65) Prior Publication Data (74) Attorney, Agent, or Firm — Sunah Lee; Kate Drakos;
US 2013/0223445 A1 Aug. 29,2013 Micky Minhas
(51) Int.CL (57) ABSTRACT
HO4L 29/12 (2006.01) Various embodiments pertain to techniques for translation of
(52) US.CL network addresses including encapsulating state information
CPC ool HO4L 61/251 (2013.01); HO4L 61/255 into the data packet being transferred. A NAT device receives
(2013.01); HO4L 2212/0025 (2013.01) a data packet destined for an IPv4 server from an IPv6 client
(58) Field of Classification Search device and translates the fiest.ination a.ddrfzss. The NAT device
None encapsulates the translation information into the data packet,
See application file for complete search history. and transmits the data packet to the IPv4 server. Upon receiv-
ing aresponse from the IPv4 server, the NAT device translates
(56) References Cited the source address on the data packet to reflect the original

U.S. PATENT DOCUMENTS

6,389,468 Bl 5/2002 Muller et al.
7,418,001 B2 8/2008 Yun et al.
7,440,405 B2 10/2008 Hsieh et al.
7,551,632 B2 6/2009 Thubert et al.

2003/0031173 Al* 2/2003 Parketal.ccocevnrnn 370/389
Client Device NAT Device
- MAX 1500—— |
TCP | SRC=IPV6

|
|
|
| Mss | Dst=1pvg | |
_ 1460 |MTU 1500) |

—Mini Jumbo—

Tcp ; SRC=IPv6
MSS | Dst=IPv6
602 1460 - IP-option SRC-V6

destination address for the packet received from the IPv6
client, such that the client device may be unaware that it was
communicating with an IPv4 server. In various embodiments,
the translation information is embedded in the IP options as
part of the TCP header of the data packet.

22 Claims, 7 Drawing Sheets

600

Host Server Virtual Machine

—

SRC=iPva
DSt= IPv4 | ~MAXI500——

TCP - SRC=IPva
o MSS ' DSt= IPvd
3 604 1460 |
- o ——— —»
| 606
! o
|
i
- MAX 1500- -
TCP | SRCEIPVA
| . i MSS - DSt= |Pv4
‘ ‘
‘ ; Mini Jumbo- - i 1460 i
e MAxs00— - | TR | SRV [l
—_— — H st=IPv t= IPv4 ' 608
; TCP | SRC=IPV6) | | 1460| |P-option SRC-V6 1 -
‘ | Mss | Dst=1Pv6 i
| ' 1460 |MTU 1500 1, 610 3
! !
: ‘
; 612 |
T |
‘ !
! |
| |
‘

U.S. Patent Sep. 15, 2015 Sheet 1 of 7 US 9,137,199 B2

Host Server 110

Processor(s) 120

-,

Computer-Readable
Storage Media 118

Virtualization
Module 122
IPv4 Network 108

Virtual Machine 124

Web-Based
Executable Module
126

NAT Device
106

IPv6 Network 104

Client Device 102

Processor(s) 114

Computer-Readabie
Storage Media 112

(Browser 116 J

U.S. Patent

Sep. 15, 2015 Sheet 2 of 7

US 9,137,199 B2

y 200

Data Packet 202

Application Layer 210

Transport Layer 208

Network Layer 206

Link Layer 204

US 9,137,199 B2

Sheet 3 of 7

Sep. 15, 2015

U.S. Patent

A2IAP 1¥YN J\ [Janas 1soy N
wouy 1a3joed ejep aAI309Y = 01 19yoed ejep ywsues|
1€ L 01¢
e A /
) —
S9SSAIPPE d| DIIMaY
30€
) A
1

.

S21IA3P JuBlD H
wouy 1932ed elep anRIaY

[ERIE]S) h

90¢ ;

T9AI3S 150H

00g —*

931A3Q LVYN

LYN ©1193ded ejep ywsued |
¥0€

1 » ™

UOI1I8UU0D 4] | H d1e1Mu]
0¢€

. /

N

US 9,137,199 B2

Sheet 4 of 7

Sep. 15, 2015

U.S. Patent

r

™
J9AIDS

150y 01 3suodsat Jwsued

221A3p
1¥N 01 asuodsau puag
9T¥

i

(I
uoELLLIOU

o1e1s pajeinsdesus xiy
257
\

i

suiyoew |lenia

N

1

57

i

.

r

19A19S 150y
wouy 1332ed ejep anlvday

A

woJy asuodsau aneday

[457
N

1
aulydew |BeN1IA

80V

DUIYSEIN [ENHIA

01 1ay0ed ejep ywisues |

L 907
i _/
4 N
uolewJou;
2)e1s pale|nsdesus anowY
7172
4 N
20IASP 1YN
woJy 19oed elep aaleday
017
.
T9AI3S 150H

US 9,137,199 B2

Sheet S of 7

Sep. 15, 2015

U.S. Patent

2IADp
1V¥N 01 asuodsai puas

c0s

|

-

o

SRILET

U3l 03 asuodsas Yusues]

805

~

i

g

N

—

S9SS2IPPE d| 31MaY

90%

S

i

7

|

TSAISS 150H

005 —*

e

19AIBS

oS

|3ined LVN

1S0Y wouy asuodsal aAId0Yy

)

L

H asuodsal anlaI9Y

T

LY,

BIIABq Ul

US 9,137,199 B2

Sheet 6 of 7

Sep. 15, 2015

U.S. Patent

19

A

) 4

079 00ST NLN| 097T
9AdI =150 | SSI

s ot e o omwﬂ 9AdI=DHS | dOL
PAdI=DY¥S 9AdI=DHS | dOL 005k XV

¥AdI =150 | SSIA
PAdI=D¥S | ddL

~—— ——oqunp uI————»

|
|
|
|
|
|
|
|
|
|
|
|
|
» 9A-DYS uondo-dj
W
|
|
|

[
|
m 09T
"
,
"

A

0971 €03
N1 (GosT NI ooot
doL

“~——005} XVYIN— —»

A 909 |

I -

m 09T | vo3

! _ |

| PAdI =150 | SSW ! 9A-DYS uondo-d|
| PAI=DHS | dDL | .

| | Adl =15Q 9AdI=1sd
T 00sk XVIN—— U wAdi=Dys 9AdI=DYS
| |

1 i

| {

i !

SUTYIBIA [eRIIIA
009 — —*

I
J9A19G 1SOH

~—————oqunp u———»

9Ad| =315Q | SSW
9AdI=DHS | dDlL

~ —0091 XYW— |
331A3Q IVN BIABQ U

U.S. Patent Sep. 15, 2015 Sheet 7 of 7 US 9,137,199 B2

700
N |
704
702 ™
Memory/Storage
Processor Component
708
Y y
z: Bus >
706 Y
) I/O Device

US 9,137,199 B2

1
STATEFUL NAT64 FUNCTION IN A
DISTRIBUTED ARCHITECTURE

BACKGROUND

Each device connected to a network, such as the internet, is
assigned a unique, numerical internet protocol (IP) address
such as 98.76.543.210. To send data, such as a web page
request, from one device to another, a data packet containing
the IP addresses of both devices is transferred across the
network. The underlying technology that makes connection
of devices to the internet possible is Internet Protocol version
4 (IPv4). Because IPv4 uses 32-bit internet addresses, it can
support roughly 4.29 billion IP addresses. To date, nearly all
of these addresses have been assigned. Internet Protocol ver-
sion 6 (IPv6), the successor to IPv4, functions similarly to
1Pv4 by providing unique, numerical IP addresses to enable
devices to communicate via the internet. However, in contrast
to IPv4, IPv6 utilizes 128-bit addresses, allowing it to support
27128 IP addresses. The transition from IPv4 to IPv6 has been
slow and only a fraction of the web has switched to the new
protocol. With some devices running on IPv4 and some run-
ning on IPv6, which essentially run as parallel networks,
exchanging data requires special gateways, such as a Network
Address Translation (NAT) router.

When a packet received from an IPv6 device is destined for
an IPv4 device, a NAT64 router translates the packet from the
IPv6 network into the IPv4 network. The translation includes
translation of the IPv6 address into an IPv4 address. Because
the IPv6 address space is much larger than the IPv4 address
space, one-to-one mapping is not possible, and the router is
required to maintain a map of the addresses. In stateful
NAT64 mapping, the address mapping (or state table) is cre-
ated when the first packet from the IPv6 network reaches the
NAT64 router to be translated. After the state table has been
created, packets can flow between the networks. However,
maintaining the state table utilizes space and memory on the
device that could be used for other processes. In addition, the
size of the state table is limited by the resources of the device,
such as available memory.

SUMMARY

This Summary is provided to introduce a selection of con-
cepts in a simplified form that are further described below in
the Detailed Description. This Summary is not intended to
identify key features or essential features of the claimed sub-
ject matter, nor is it intended to be used to limit the scope of
the claimed subject matter.

Various embodiments pertain to techniques for translation
of network addresses including encapsulating state informa-
tion into the data packet being transferred. A NAT device
receives a data packet destined for an IPv4 server from an
IPv6 client device and translates the destination address. The
NAT device encapsulates the translation information into the
data packet, and transmits the data packet to the IPv4 server.
Upon receiving a response from the IPv4 server, the NAT
device translates the source address on the data packet to
reflect the original destination address for the packet received
from the IPv6 client, such that the client device may be
unaware that it was communicating with an IPv4 server. In
various embodiments, the translation information is embed-
ded in the IP options as part of the TCP header of the data
packet.

In various embodiments, jumbo packets or jumbo frames
are enabled between the NAT device and host server. Jumbo
packets are data packets having an increased maximum seg-

25

40

45

55

2

ment size (MSS) (e.g., 1500 bits or more) when compared to
the standard MSS utilized for transmission (e.g., 1460 bits).
The increased MSS enables the original 128-bit IP address to
be encapsulated as part of the header what would exceed the
standard MSS.

BRIEF DESCRIPTION OF THE DRAWINGS

While the specification concludes with claims particularly
pointing out and distinctly claiming the subject matter, it is
believed that the embodiments will be better understood from
the following description in conjunction with the accompa-
nying figures, in which:

FIG. 1 illustrates an example operating environment in
accordance with one or more embodiments;

FIG. 2 is a block diagram of a data packet in accordance
with one or more embodiments;

FIG. 3 is a flow diagram of an example process for trans-
mitting a data packet from a client device to a host server in
accordance with one or more embodiments;

FIG. 4 is a flow diagram of an example process for trans-
mitting a data packet from a host server to a client device in
accordance with one or more embodiments;

FIG. 5 is a flow diagram of an example process for trans-
mitting a data packet from a host server to a client device in
accordance with one or more embodiments;

FIG. 6 is a diagram of an example transmission path for a
data packet in accordance with one or more embodiments;
and

FIG. 7 is a block diagram of an example device that can be
used to implement one or more embodiments.

DETAILED DESCRIPTION
Overview

Various embodiments pertain to techniques for translation
of network addresses including encapsulating state informa-
tion into the data packet being transferred. A NAT device
receives a data packet destined for an IPv4 server, or a device
accessible via an IPv4 server, from an IPv6 client device and
translates the destination address. The NAT device encapsu-
lates the translation information into the data packet, and
transmits the data packet to the IPv4 server. Upon receiving a
response from the IPv4 server, the NAT device translates the
source address on the data packet to reflect the original des-
tination address for the packet received from the IPv6 client,
such that the client device may be unaware that it was com-
municating with an IPv4 server. In various embodiments, the
translation information is embedded in the IP options as part
of'the TCP header of the data packet.

In various embodiments, jumbo packets or jumbo frames
are enabled between the NAT device and host server. Jumbo
packets are data packets having an increased maximum seg-
ment size (MSS) (e.g., 1500 bits or more) when compared to
the standard MSS utilized for transmission (e.g., 1460 bits).
The increased MSS enables the original 128-bit IP address to
be encapsulated as part of the header what would exceed the
standard MSS.

In the discussion that follows, a section entitled “Example
Operating Environment” describes an operating environment
in accordance with one or more embodiments. Next, a section
entitled “Example Embodiments” describes various example
embodiments of translating of network addresses by includ-
ing encapsulating state information into the data packet being
transferred and various paths of transmission for a data packet
through networks operated according to different protocols.

US 9,137,199 B2

3

Finally, a section entitled “Example Device” describes an
example device that can be used to implement one or more
embodiments.

Consider, now, an example operating environment in
accordance with one or more embodiments.

Example Operating Environment

FIG. 1 is an illustration of an example environment 100 in
accordance with one or more embodiments. Environment 100
includes a client device 102 that is part of an IPv6 network
104. IPv6 network 104 is connected via a NAT device 106 to
an IPv4 network 108. IPv4 network 108 includes at least host
server 110.

Client device 102 includes computer-readable storage
media 112 and at least one processor 114. A software execut-
able module in the form of a browser 116 is embodied on
computer-readable storage media 112 and, under the influ-
ence of processor 114, is configured to send information to,
and receive information from, network devices, such as host
server 110. For example, browser 116 can transmit a request
for a web page or web-based application to host server 110 via
networks 104 and 108. Client device 102 can be embodied as
any suitable computing device such as, by way of example
and not limitation, a desktop computer, a portable computer,
a netbook, a handheld computer such as a personal digital
assistant (PDA), cell phone, and the like.

Client device 102 is part of IPv6 network 104, and, like
other devices that can be included in IPv6 network 104, it has
a unique 128-bit IP address. As part of IPv6 network 104,
client device 102 includes executable modules, such as an
operating system and other applications with network capa-
bilities, and hardware components that are IPv6-ready or are
compatible with IPv6.

In various embodiments, a device on IPv6 network 104,
such as client device 102, can transmit a data packet destined
for a device on another network, such as host server 110 on
IPv4 network 108. In such embodiments, NAT device 106 is
configured to translate the data packet for transmission over
the IPv4 network. The translation includes translation of the
1P addresses of the source of the data packet and the destina-
tion for the data packet from IPv6 addresses into an IPv4
addresses. In various embodiments, NAT device 106 is con-
figured to encapsulate the original IPv6 addresses for the
destination into the data packet. This can be done in various
ways, examples of which are provided above and below. Once
the data packet includes a destination IP address in the form of
an [Pv4 address, the data packet can be transmitted via IPv4
network 108 to its destination.

In various embodiments, environment 100 includes more
than one NAT device. When the state information is encap-
sulated in the data packet, the NAT device is not required to
maintain a state table for translation between IPv6 and IPv4
addresses. Rather, because the information is included as part
of the data packet itself, the NAT device can determine the
appropriate translation of the address from the data packet. In
various embodiments, each NAT device is configured to iden-
tify the encapsulated state information within the data packet
and translate the address accordingly. When the NAT devices
are configured in this way, a data packet transferred from an
IPv6 network device (e.g., client device 102) to an IPv4
network device (e.g., virtual machine 124) need not pass
through the same NAT device as the data packet including a
response from the IPv4 network device to the IPv6 network
device for proper translation. This can enable NAT devices to
be deployed at geographically different locations and con-
trolled using a centralized controller. Such an arrangement

10

15

20

25

30

35

40

45

50

55

60

65

4

can, for example, enable an entry point for a network to differ
from an exit point for the network. In various embodiments,
inclusion of translation information in the data packet can
enable loadbalancing and other advanced features to be
implemented on NAT device 106.

Host server 110 includes computer-readable storage media
118 and at least one processor 120. Embodied on computer-
readable storage media 118 is a virtualization module 122
that, under the influence of processor 120, is configured to
create one or more virtual machines, such as virtual machine
124. Virtual machine 124 hosts, using the resources of host
servers such as host server 110, a web-based executable mod-
ule 126. For example, host server 110 can be a host computer
for a web-based or cloud-based service, such as an email
service or other web-based application. The web-based
executable module 126 can be embodied on virtual machine
124. In various embodiments, virtual machine 124 can utilize
the resources, such as memory and processors, of multiple
host servers, such as servers that are part of a “server farm.”

In various embodiments, host servers, such as host server
110, along with NAT devices, such as NAT device 106, are
configured to send and receive jumbo packets or jumbo
frames. A jumbo packet or jumbo frame is a packet with a
frame size that is larger than typically supported in the envi-
ronment. For example, assume devices within the environ-
ment, such as client device 102 and virtual machine 124, are
configured to accept data packets with a maximum segment
size (MSS) of 1460 bits. Data transmitted between the
devices exceeding this MSS will be broken down and trans-
mitted in a series of packets. Encapsulation of the state infor-
mation into the data packet adds at least 128 bits to the packet,
and can bring the size of a data packet that was originally less
than the MSS over the 1460 bits allowed. Host servers and
NAT devices can be enabled to receive jumbo packets with an
MSS of 1500 bits or more via packet configuration settings
within the devices. In various embodiments, host server 110
can remove the encapsulated information before transmitting
the data packet to virtual machine 124 so that the data packet
size has returned to its original size or fewer bits, and packet
configuration of the virtual machine 124 does not need to be
reconfigured.

When client device 102 transmits a data packet intended
for virtual machine 124, such as a request for information
from web-based executable module 126, the data packet is
relayed from IPv6 network 104 to host server 110 on IPv4
network 108 via NAT device 106. Host server 110 can trans-
mit the data packet to virtual machine 124. Any response
transmitted by virtual machine 124 will pass through host
server 110 and back to NAT device 106 for transmission to
client device 102. As described above, in some embodiments,
the original data packet transmitted from client device 102
can pass through a different NAT device than the NAT device
through which the response from virtual machine 124 passes.

The computer-readable storage media included in each
device or server can include, by way of example and not
limitation, all forms of volatile and non-volatile memory
and/or storage media that are typically associated with a
computing device. Such media can include ROM, RAM, flash
memory, hard disk, removable media and the like. One spe-
cific example of a computing device is shown and described
below in FIG. 7.

Generally, any of the functions described herein can be
implemented using software, firmware, hardware (e.g., fixed
logic circuitry), or a combination of these implementations.
The terms “module,” “functionality,” and “logic” as used
herein generally represent software, firmware, hardware, or a
combination thereof. In the case of a software implementa-

US 9,137,199 B2

5

tion, the module, functionality, or logic represents program
code that performs specified tasks when executed on a pro-
cessor (e.g., CPU or CPUs). The program code can be stored
in one or more computer-readable memory devices. The fea-
tures of the user interface techniques described below are
platform-independent, meaning that the techniques may be
implemented on a variety of commercial computing plat-
forms having a variety of processors.

Having described an exemplary operating environment,
consider the following description of translation of network
addresses including encapsulating state information into the
data packet being transferred.

Example Embodiments

FIG. 2 depicts an example data packet in accordance with
one or more embodiments. In particular, FIG. 2 illustrates an
open systems interconnection (OSI) model 200 of a data
packet 202. The model describes a set of implementations of
networking protocols to enable various devices to communi-
cate over a network. Data packet 202 is shown including four
layers: link layer 204, network layer 206, transport layer 208,
and application layer 210. In various embodiments, applica-
tion layer 210 can include additional layers which have been
condensed herein for simplicity.

Link layer 204 provides the functional and procedural
means to transfer data between network entities and to detect
and possibly correct errors that may occur in the physical
layer. Transmitting and receiving packets on a link can be
controlled via a software device driver for a network card,
firmware or specialized chipsets. These components can per-
form data link functions, such as adding a packet header and
transmitting the frame over a physical medium, such as via a
network hub.

Network layer 206 transmits packets across one or more
networks by performing at least two basic functions: host
addressing and identification and packet routing. The net-
work layer 206 can include data utilized by various upper
layer protocols, such as transmission control protocol (TCP)
and user datagram protocol (UDP), for example. The TCP
header can also include an IP options field, in addition to other
fields, that can be used to provide information for components
involved in the IP transmission of the data packet 202. In
various embodiments, state information for use in translating
the IP addresses for the data packet between IPv6 and 1Pv4
formats can be encapsulated in the data packet 202 by includ-
ing it in the IP options field. In various embodiments, network
layer 206 includes an IP header that includes a source IP
address and a destination IP address for the data packet.

Transport layer 208 can provide end-to-end message trans-
fer capabilities independent of the underlying network, in
addition to providing error control, segmentation, flow con-
trol, and application addressing functionality. End-to-end
message transmission can be connection-oriented (such as
implemented in TCP) or connectionless (such as imple-
mented in UDP). Transport layer 208 can connect applica-
tions via service ports and provide reliability to the TCP/IP
stack.

Application layer 210 represents the highest-level proto-
cols used by most applications for network communication.
Application layer 210 provides the functional and procedural
means to transfer data between network entities and to detect
and possibly correct errors that may occur in the physical
layer, and can include a session layer and a presentation layer,
in some embodiments. Application layer 210 can provide
interhost communication, manage sessions between applica-

15

30

35

40

45

6

tions, encryption and decryption functionality, and can con-
vert machine dependent data to machine independent data.

FIG. 3 is an example process 300 for transmitting a data
packet from a client device to a host server in accordance with
one or more embodiments. The process can be implemented
in connection with any suitable hardware, software, firm-
ware, or combination thereof. In at least some embodiments,
the process can be implemented in software. In FIG. 3, vari-
ous steps in the process are indicated as being performed by a
“Client Device,” a “NAT Device,” or a “Host Server.”

Block 302 initiates a hypertext transfer protocol (HTTP)
connection. This can be performed in any suitable way. For
example, a user can enter a domain name or uniform resource
locator (URL) into an address bar of browser 116 on client
device 102.

Block 304 transmits a data packet to a NAT device. The
data packet includes an IPv6 address corresponding to the
client device as its source address and an IPv6 address corre-
sponding to the destination of the packet as its destination
address. This can be performed in any suitable way. For
example, browser 116 can transmit a request for information
from a web-based service, such as web-based executable
module 126 on virtual machine 124. The data packet can
include an IPv6 address for client device 102 as its source
address and can include an IPv6 address for virtual machine
124 as its destination address. Because virtual machine 124
operates on IPv4 network 108, the data packet first passes to
NAT device 106 for translation.

Block 306 receives the data packet from the client device.
This can be performed in any suitable way. For example, NAT
device 106 can receive the data packet via IPv6 network 104.

Block 308 rewrites the IP addresses. This can be performed
in any suitable way. For example, NAT device 106 can trans-
late the IPv6 addresses for client device 102 and virtual
machine 124 into IPv4 addresses and insert these IPv4
addresses into the IP header as the source and destination
addresses for the data packet. In various embodiments, the
original IPv6 addresses are encapsulated into the data packet.
This can be performed in any suitable way. For example, in
some embodiments, the state information required to trans-
late the network addresses between IPv6 and IPv4 can be
inserted into an “IP Options™ field that is part of the TCP
header. The state information can be encapsulated in other
areas or according to other methods depending on the par-
ticular embodiment, provided both the NAT device and host
server are configured to identify the state information within
the data packet.

Block 310 transmits the data packet to the host server. This
can be performed in any suitable way. For example, NAT
device 106 can transmit the data packet to host server 110 via
IPv4 network 108. Finally, block 312 receives the data packet
from the NAT device. This can be performed in any suitable
way.

In some embodiments, the host server can be the ultimate
destination for the data packet. For example, the host server
can be a web page hosting server and the data packet can be a
request for a web page. In such embodiments, the data packet
has reached its destination when it is received by the host
server at block 312. However, in other embodiments, the data
packet has a destination accessible via the host server. For
example, when browser 116 transmits a request for informa-
tion from a web-based service, such as web-based executable
module 126 on virtual machine 124, the data packet passes
through host server 110 which transmits the data packet to
virtual machine 124.

FIG. 4 is an example process 400 for transmitting a data
packet from a host server to a virtual machine in accordance

US 9,137,199 B2

7

with one or more embodiments. The process can be imple-
mented in connection with any suitable hardware, software,
firmware, or combination thereof. In at least some embodi-
ments, the process can be implemented in software. In FIG. 4,
various steps in the process are indicated as being performed
by a “Host Server” or a “Virtual Machine”

Block 402 receives a data packet from a NAT device. This
can be performed in any suitable way. For example, host
server 110 can receive a data packet from NAT device 106 via
1Pv4 network 108. In various embodiments, the data packet
includes encapsulated state information, as described above
and below.

Next, block 404 removes the encapsulated state informa-
tion. This can be performed in any suitable way. For example,
host server 110, configured to identify the encapsulated state
information within the data packet, can remove the state
information from its location in the data packet. For example,
if the state information is encapsulated in the data packet by
having been inserted into the IP options field in the TCP
header, host server 110 can remove the state information from
the IP options field. In various embodiments, host server 110
also removes the top layer of the data packet.

Block 406 transmits the data packet to a virtual machine.
This can be performed in any suitable way. For example, host
server 110 can transmit the data packet to virtual machine 124
as indicated by the destination IP address in the data packet
header.

Block 408 receives the data, packet from the host server.
This can be performed in any suitable way. For example,
virtual machine 124 can receive the data packet from host
server 110. In various embodiments, when the virtual
machine receives the data packet, it processes the data packet
and responds accordingly. For example, in some embodi-
ments, the data packet will include a request for a response
indicating that the data packet was received. In other embodi-
ments, the data packet includes a request for a web page or
other information from the virtual machine. In such embodi-
ments, the response can include such information requested
in the original data packet.

Block 410 transmits a response to the host server. This can
be performed in any suitable way. For example, virtual
machine 124 can transmit a response in the form of another
data packet to host server 110. This new data packet which
includes the response includes the IPv4 address of the virtual
machine as well as the IPv4 address for the client device 102.
Virtual machine 124 obtains the IPv4 address for the client
device 102 from the “source address” of the original data
packet.

Block 412 receives the response from the virtual machine.
This can be performed in any suitable way. For example, host
server 110 can receive the data packet including the response
from virtual machine 124.

Block 414 affixes encapsulated state information to the
data packet. This can be performed in any suitable way. For
example, host server 110 can affix the encapsulated state
information by including the state information in the IP
options field of the TCP header when it affixes an outer layer
to the data packet for transmission. The encapsulated state
information can be affixed in other locations depending on the
particular embodiment.

Finally, block 416 transmits the response to a NAT device.
This can be performed in any suitable way. For example, host
server 110 can transmit the response to NAT device 106 via
IPv4 network 108. In various embodiments, the NAT device
to which the host server transmits the response can be the
same or a different NAT device from which the original data
packet was received.

5

10

15

20

25

30

35

40

45

50

55

60

65

8

Having transmitted the original data packet to its ultimate
destination (e.g., either a virtual machine or a host server,
depending on the particular embodiment), in various embodi-
ments, a response is transmitted back to the client device. In
embodiments in which a virtual machine transmits a
response, the response is transmitted back to the client device
after passing through the host server. The path of data trans-
mission of the response is therefore the same from the point of
the host server on to the client device regardless of whether
the host server or the virtual machine has generated the
response.

FIG. 5 is an example process 500 for transmitting a data
packet including a response from a host server to a client
device in accordance with one or more embodiments. The
process can be implemented in connection with any suitable
hardware, software, firmware, or combination thereof. In at
least some embodiments, the process can be implemented in
software. In FIG. 5, various steps in the process are indicated
as being performed by a “Client Device,” a “NAT Device,” or
a “Host Server.”

Block 502 sends a response to a NAT device. This can be
performed in any suitable way. For example, host server 110
can transmit a response to NAT device 106 via [Pv4 network
108. In some embodiments, the response was received from a
virtual machine, while in other embodiments, the response
was generated by host server 110 because the host server was
the destination of the original data packet. The response
includes encapsulated state information, as described above
and below.

Block 504 receives a response from a host server. This can
be performed in any suitable way. For example, NAT device
106 receives the response from host server 110.

Next, block 506 rewrites the IP addresses. This can be
performed in any suitable way. For example, NAT device 106
can extract the state information that was encapsulated within
the data packet and translate the source and destination IP
addresses from IPv4 addresses to IPv6 addresses. When
translated into IPv6 addresses, the IP addresses for the
response match the IP addresses included in the data packet
transmitted by block 304 in FIG. 3, with the exception that the
source address in the response was the destination address in
the data packet transmitted by block 304 and the destination
address in the response was the source address in the data
packet transmitted by block 304. NAT device 106 also
removes the encapsulated state information and returns the
data packet to its original size.

Block 508 transmits the response to the client device. This
can be performed in any suitable way. For example, NAT
device 106 can transmit the response to client device 102 via
IPv6 network 104. Block 510 receives the response. This can
be performed in any suitable way. For example, client device
102 receives the response from NAT device 106.

Because the IP addresses were translated utilizing the same
state information for the data packets from the client device to
the virtual machine and from the virtual machine to the client
device, when the client device receives the response, the
response indicates that the source of the response is the virtual
machine to which the client device transmitted the data
packet. In other words, the IPv6 address assigned to the
virtual machine is the same for the response as it is for the
original data packet. This enables the client device to send
information to and receive information from the virtual
machine via stateful communications without awareness that
the virtual machine operates on an IPv4 network. Similarly,
the virtual machine can communicate with client devices
operating on an IPv6 network though it may only be config-
ured for communication via an IPv4 network.

US 9,137,199 B2

9

FIG. 6 illustrates a transmission path 600 for a data packet
and response in accordance with one or more embodiments.
In FIG. 6, various steps in the path are indicated as being
performed by a “Client Device,” a “NAT Device,” a “Host
Server,” or a “Virtual Machine.”

At transfer 602, the data packet is transferred from a client
device to a NAT device. The IP header of the data packet
includes a source address and a destination address in IPv6
format.

Upon receipt of the data packet by the NAT device, the
NAT device translates the IPv6 addresses and encapsulates
the state information in the data packet, as described above
and below. At transfer 604, the data packet is transferred from
the NAT device to a host server. The IP header of the data
packet now includes a source address and a destination
address in IPv4 format, and the TCP header includes encap-
sulated state information. The state information can include
the source IP address and destination IP address in IPv6
format. Other information can be included, depending on the
particular embodiment. In various examples, the state infor-
mation is included in the IP options field of the TCP header,
although it can be encapsulated in other locations in the data
packet.

The data packet at transfer 604 is annotated “mini jumbo”
to represent its slightly larger-than-normal size. Because it
can be larger than a standard packet size, the NAT device and
host server can be configured to send and receive larger pack-
ets. Such configurations can be adjusted in the packet con-
figuration settings of these devices.

The host server receives the data packet and can remove the
IP header and/or clear the IP options field. Thus, at transfer
606, the data packet is returned to its normal size and is no
longer a “mini jumbo” packet. Furthermore, the IP address for
both the source and destination of the packet remain in IPv4
format. Transfer 606 transmits the data packet from the host
server to the virtual machine.

Transfer 608 represents the transfer of a response from the
virtual machine as it is transferred to the host server. The data
packet includes a source and destination address in IPv4
format.

The data packet is received by the host server, which affixes
the IP header and/or reinserts the state information into the IP
options field. The data packet can again be referred to as a
“mini jumbo” packet, as it includes encapsulated information
that makes it larger than standard size. At transfer 610, the
data packet is transferred from the host server to a NAT
device. As described above, the NAT device can be the same
NAT device that transmitted the data packet to the host server
at transfer 604 or it can be a different NAT device. Since the
state information is encapsulated within the data packet, any
NAT device configured to understand the encapsulation can
correctly translate the IP addresses back into IPv6 format.

The NAT device translates the IP addresses into IPv4 for-
mat using the state information and removes the state infor-
mation from the data packet, returning it to a standard size. At
transfer 612, the data packet, which includes source and des-
tination IP addresses in IPv6 format, is transmitted from the
NAT device to the client device. The source IP address of the
data packet at transfer 612 matches the destination IP address
of the data packet at transfer 602, indicating to the client
device that a response has been received from the virtual
machine.

Having described various embodiments for encapsulating
state information for translation of network addresses, con-
sider a device that can be used to implement one or more
embodiments.

10

15

20

25

30

35

40

45

50

55

60

65

10

Example Device

FIG. 7 illustrates an example computing device 700 that
can be used to implement the various embodiments described
above. Computing device 700 can be, for example, host
server 110 or NAT device 106 of FIG. 1 or any other suitable
computing device.

Computing device 700 includes one or more processors or
processing units 702, one or more memory and/or storage
components 704, one or more input/output (I/0) devices 706,
and a bus 708 that allows the various components and devices
to communicate with one another. Bus 708 represents one or
more of any of several types of bus structures, including a
memory bus or memory controller, a peripheral bus, an accel-
erated graphics port, and a processor or local bus using any of
a variety of bus architectures. Bus 708 can include wired
and/or wireless buses.

Memory/storage component 704 represents one or more
computer storage media. Memory/storage component 704
can include volatile media (such as random access memory
(RAM)) and/or nonvolatile media (such as read only memory
(ROM), flash memory, optical disks, magnetic disks, and so
forth). Component 704 can include fixed media (e.g., RAM,
ROM, a fixed hard drive, etc.) as well as removable media
(e.g., atlash memory drive, a removable hard drive, an optical
disk, and so forth).

One or more input/output devices 706 allow a user to enter
commands and information to computing device 700, and
also allow information to be presented to the user and/or other
components or devices. Examples of input devices include a
keyboard, a cursor control device (e.g., a mouse), a micro-
phone, a scanner, devices configured to receive gesture, touch
or voice input, and so forth. Examples of output devices
include a display device (e.g., a monitor or projector), speak-
ers, a printer, a network card, and so forth.

As before, the blocks may be representative of modules
that are configured to provide represented functionality. Fur-
ther, any of the functions described herein can be imple-
mented using software, firmware (e.g., fixed logic circuitry),
manual processing, or a combination of these implementa-
tions. The terms “module,” “functionality,” and “logic” as
used herein generally represent software, firmware, hard-
ware, or a combination thereof. In the case of a software
implementation, the module, functionality, or logic repre-
sents program code that performs specified tasks when
executed on a processor (e.g., CPU or CPUs). The program
code can be stored in one or more computer-readable storage
devices. The features of the techniques described above are
platform-independent, meaning that the techniques may be
implemented on a variety of commercial computing plat-
forms having a variety of processors.

Various techniques may be described herein in the general
context of software or program modules. Generally, software
includes routines, programs, objects, components, data struc-
tures, and so forth that perform particular tasks or implement
particular abstract data types. An implementation of these
modules and techniques may be stored on or transmitted
across some form of computer readable media. Computer
readable media can be any available medium or media that
can be accessed by a computing device. By way of example,
and not limitation, computer readable media may comprise
“computer-readable storage media.”

“Computer-readable storage media” include volatile and
non-volatile, removable and non-removable media imple-
mented in any method or technology for storage of informa-
tion such as computer readable instructions, data structures,
program modules, or other data. Computer-readable storage

US 9,137,199 B2

11

media include, but are not limited to, RAM, ROM, EEPROM,
flash memory or other memory technology, CD-ROM, digital
versatile disks (DVD) or other optical storage, magnetic cas-
settes, magnetic tape, magnetic disk storage or other mag-
netic storage devices, or any other medium which can be used
to store the desired information and which can be accessed by
a computer.

While various embodiments have been described above, it
should be understood that they have been presented by way of
example, and not limitation. It will be apparent to persons
skilled in the relevant art(s) that various changes in form and
detail can be made therein without departing from the scope
of the present disclosure. Thus, embodiments should not be
limited by any of the above-described exemplary embodi-
ments, but should be defined only in accordance with the
following claims and their equivalents.

What is claimed is:

1. One or more computer-readable storage memory
devices comprising instructions that are executable to cause a
device to perform a process comprising:

receiving a data packet including a source address and a

destination address in an IPv6 format;

translating the source address and the destination address

to an IPv4 format according to state information; and
encapsulating the state information in a TCP Header of the
data packet.

2. The one or more computer-readable storage memory
devices of claim 1, encapsulating the state information in the
TCP header comprising encapsulating the state information
in an IP options field in the TCP header.

3. The one or more computer-readable storage memory
devices of claim 1, the process further comprising:

receiving the data packet via an IPv6 network.

4. The one or more computer-readable storage memory
devices of claim 1, the process further comprising:

transmitting the data packet including encapsulated state

information.

5. The one or more computer-readable storage memory
devices of claim 4, the transmitting the data packet compris-
ing transmitting the data packet via an IPv4 network.

6. The one or more computer-readable storage memory
devices of claim 1, wherein the translating further comprises
increasing a Maximum Segment Size (MSS) of the data
packet in the IPv4 format.

7. The one or more computer-readable storage memory
devices of claim 6, wherein the increased MSS increases the
size of the data packet in the [Pv4 format to accommodate the
encapsulated state information.

8. A device comprising:

one Or more processors;

one or more computer-readable storage media;

one or more modules embodied on the one or more com-

puter-readable storage media and executable under the

influence of the one or more processors, the one or more

modules configured to:

receive a data packet including a source address and a
destination address in a first format according to an
1Pv6 protocol;

translate the source address and the destination address
to a second format according to an IPv4 protocol
using state information; and

encapsulate the state information in a TCP header of the
data packet.

10

15

20

25

30

35

40

45

50

55

60

12

9. The device of claim 8, the one or more modules further
configured to:

transmit the data packet including encapsulated state infor-

mation over a network operated according to the [Pv4
protocol.

10. The device of claim 8, the one or more modules con-
figured to receive the data packet comprising the one or more
modules configured to receive the data packet via a first
network operated according to the first IPv6 protocol.

11. The device of claim 10, the one or more modules further
configured to:

transmit the data packet including encapsulated state infor-

mation over a second network operated according to the
1Pv4 protocol.
12. The device of claim 8, the one or more modules further
configured to:
receive a response including a source address and a desti-
nation address in the second format according to the
IPv4 protocol; and

translate the source address and the destination address of
the response to the first format according the IPv6 pro-
tocol using state information encapsulated in the
response.

13. The device of claim 8, the encapsulation of the state
information in the TCP header comprises encapsulating the
state information in an IP options field in the TCP header.

14. The device of claim 8, wherein the translation further
comprises increasing a Maximum Segment Size (MSS) ofthe
data packet in the IPv4 format.

15. The device of claim 14, wherein the increased MSS
increases the size of the data packet in the IPv4 format to
accommodate the encapsulated state information.

16. A computer implemented method comprising:

receiving a data packet including a source address and a

destination address in an IPv6 format;

translating the source address and the destination address

to an IPv4 format according to state information; and
encapsulating the state information in a TCP Header of the
data packet.

17. The computer implemented method of claim 16, encap-
sulating the state information comprising encapsulating the
state information in an IP options field in the TCP header.

18. The computer implemented method of claim 16 further
comprising:

receiving the data packet via an IPv6 network.

19. The computer implemented method of claim 16 further
comprising:

transmitting the data packet including encapsulated state

information.

20. The computer implemented method of claim 19, the
transmitting the data packet comprising transmitting the data
packet via an IPv4 network.

21. The computer implemented method of claim 16,
wherein the translating further comprises increasing a Maxi-
mum Segment Size (MSS) of the data packet in the IPv4
format.

22. The computer implemented method of claim 21,
wherein the increased MSS increases the size of the data
packet in the IPv4 format to accommodate the encapsulated
state information.

